Cómo está creado Polards frente a Pandas
Cómo usar esta libreria
import polars as pl
df.select(pl.all()) |
df.filter(pl.col("ref") == "c") |
Eliminar filas con valores nulos: | Pandas: | Polars: |
A Notebook Toolkit since 2013: //Tech// R, Python, GCP, Tableau //Methodologies// Scrum + Kanban, Design Thinking, Data Frameworks
import polars as pl
df.select(pl.all()) |
df.filter(pl.col("ref") == "c") |
Eliminar filas con valores nulos: | Pandas: | Polars: |
One key step in K-means clustering is deciding on the number of clusters. Ideally, the data itself should guide us on the optimal number of groups.
There are several ways to detemine the number of cluster
This is what we want to achieve in a picture with our groups:
The elbow criterion helps us achieve this. It plots the ratio of within-cluster variance to between-cluster variance against the number of clusters. We want this ratio to be low, indicating tight clusters and high separation between them.
It looks like this:
As we increase the number of clusters, this ratio initially drops significantly. However, there comes a point where adding more clusters doesn't lead to a substantial improvement.
This point, known as the "elbow," is considered the ideal number of clusters.
Today, let's unravel the magic of K-Means clustering, your trusty tool for discovering those hidden gems within your marketing data.
What's K-Means Clustering, you ask?
Think of K-Means as a way to group similar data points together, helping you uncover those underlying patterns that might not be obvious at first glance. It's like sorting your favorite candies into different piles based on their flavors – except in this case, we're using customer data like demographics or location.
How Does It Work?
Validate Your Clusters:
Remember:
De un vistazo podemos ver en esta tabla de las diferentes herramientas que están contenidas dentro de Vertex y que nos ayudan a crear nuestros modelos de forma más fácil desde las soluciones No code a los servicios para entrenar y desarrollar estos
dl_coursera --cookies /Users/Maria/Downloads/cookies.txt
--slug machine-learning-business-professionals --outdir mt --how builtin
--cookies xxxx-direccion-donde-tenemos-descargadas-las-cookies-de-coursera-xxxx
Aquí debes poner la dirección donde están las cookies)
--slug xxxx-url-especifica-del-curso-xxxx
Aquí pondrás la dirección del curso
--outdir xxxxxxxxAquí el nombre del directorio donde se descargaráResultado : Ya tenemos los videos en nuestro ordenador
Y et voilá aquí tendremos nuestro cursos con sus videos y materialesEspero que sea de ayuda en tu camino al aprendizaje.
Este curso además aunque tiene ya varios años es super útil para entender los beneficios para las empresas.
CREATE OR REPLACE MODEL
bike_model.model
OPTIONS
(input_label_cols=['duration'],
model_type='linear_reg')
AS
SELECT
duration,
start_station_name,
CAST(EXTRACT(dayofweek
FROM
start_date) AS STRING) AS dayofweek,
CAST(EXTRACT(hour
FROM
start_date) AS STRING) AS hourofday
FROM
`bigquery-public-data`.london_bicycles.cycle_hire